News Release

ALS protein dynamics highlight delicate balance between self-association and aggregation

Peer-Reviewed Publication

PLOS

The ALS-related protein TDP-43 takes the first steps toward pathologic aggregation as part of its normal function, according to a new study publishing in the Open Access journal PLOS Biology on Jan. 6, 2016. The study, by Liangzhong Lim, Jianxing Song, and colleagues at the National University of Singapore, supports the emerging idea that protein aggregation in neurologic disease may be an exaggeration of the normal functions of the aggregating proteins.

Cytoplasmic aggregates of normal TDP-43 are found in almost all forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting motor neurons, as well as in many cases of frontotemporal dementia (FTD). TDP-43 aggregation has been observed in ~97% of ALS and ~45% of FTD patients. It has also been implicated in a range of other neurodegenerative disorders, including, recently, Alzheimer's disease.

Study of the protein's biophysical properties, including aggregation dynamics, has been hampered by its strong propensity to aggregate, a problem the authors recently overcame by reducing salt concentrations in vitro. Here, they used a variety of spectroscopic and microscopic techniques to characterize in detail the structure of the C-terminal prion-like domain of TDP-43, and how the protein forms dynamic oligomers through interactions of the domain on separate protein molecules or by interacting with nucleic acid. While mutations of TDP-43 are a rare cause of ALS, this prion-like domain hosts most of TDP-43's ALS-causing mutations. The authors showed that these mutations increase assembly and decrease disassembly of oligomers, tilting the balance toward aggregation into amyloid fibrils. The authors also discovered that a region of the protein that has previously been found to be necessary for toxicity promotes its association with membranes, which may increase aggregation propensity.

These results further highlight the delicate balance between normal function and pathology for aggregation-prone proteins such as TDP-43, and may help explain how aggregates of the non-mutated protein form in ALS. The authors also suggest that decreasing TDP-43's membrane-association potential "may represent a promising therapeutic strategy to treat neurodegenerative diseases."

###

Please mention PLOS Biology as the source for this article and include the links below in your coverage to take readers to the online, open access articles.

All works published in PLOS Biology are open access, which means that everything is immediately and freely available. Use this URL in your coverage to provide readers access to the paper upon publication: http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002338

Contact: Jianxing Song, dbssjx@nus.edu.sg

Citation: Lim L, Wei Y, Lu Y, Song J (2016) ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43.PLoS Biol 14(1): e1002338. doi:10.1371/journal.pbio.1002338

Funding: This study is supported by Ministry of Education of Singapore (MOE) Tier 2 Grants 2011-T2-1-096 and MOE2015-T2-1-111 to Jianxing Song. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.