Editing Stress granules

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 62: Line 62:
 
''DNA-binding protein 43 (TDP-43) is a major disease protein in amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases. Both the cytoplasmic accumulation of toxic ubiquitinated and hyperphosphorylated TDP-43 fragments and the loss of normal TDP-43 from the nucleus may contribute to the disease progression by impairing normal RNA and protein homeostasis. Therefore, both the removal of pathological protein and the rescue of TDP-43 mislocalization may be critical for halting or reversing TDP-43 proteinopathies. Here, we report poly(A)-binding protein nuclear 1 (PABPN1) as a novel TDP-43 interaction partner that acts as a potent suppressor of TDP-43 toxicity. '''Overexpression of full-length PABPN1 but not a truncated version lacking the nuclear localization signal protects from pathogenic TDP-43-mediated toxicity, promotes the degradation of pathological TDP-43 and restores normal solubility and nuclear localization of endogenous TDP-43.''' Reduced levels of PABPN1 enhances the phenotypes in several cell culture and Drosophila models of ALS and results in the cytoplasmic mislocalization of TDP-43. Moreover, PABPN1 rescues the dysregulated stress granule (SG) dynamics and facilitates the removal of persistent SGs in TDP-43-mediated disease conditions. These findings demonstrate a role for PABPN1 in rescuing several cytopathological features of TDP-43 proteinopathy by increasing the turnover of pathologic proteins.'' {{#pmid:26130692|Chou2015}}
 
''DNA-binding protein 43 (TDP-43) is a major disease protein in amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases. Both the cytoplasmic accumulation of toxic ubiquitinated and hyperphosphorylated TDP-43 fragments and the loss of normal TDP-43 from the nucleus may contribute to the disease progression by impairing normal RNA and protein homeostasis. Therefore, both the removal of pathological protein and the rescue of TDP-43 mislocalization may be critical for halting or reversing TDP-43 proteinopathies. Here, we report poly(A)-binding protein nuclear 1 (PABPN1) as a novel TDP-43 interaction partner that acts as a potent suppressor of TDP-43 toxicity. '''Overexpression of full-length PABPN1 but not a truncated version lacking the nuclear localization signal protects from pathogenic TDP-43-mediated toxicity, promotes the degradation of pathological TDP-43 and restores normal solubility and nuclear localization of endogenous TDP-43.''' Reduced levels of PABPN1 enhances the phenotypes in several cell culture and Drosophila models of ALS and results in the cytoplasmic mislocalization of TDP-43. Moreover, PABPN1 rescues the dysregulated stress granule (SG) dynamics and facilitates the removal of persistent SGs in TDP-43-mediated disease conditions. These findings demonstrate a role for PABPN1 in rescuing several cytopathological features of TDP-43 proteinopathy by increasing the turnover of pathologic proteins.'' {{#pmid:26130692|Chou2015}}
  
''Certainly, small molecule activators of the UPS or autophagy have been shown to promote TDP-43 clearance and/or mitigate toxicity in models based on TDP-43 overexpression [66, 77, 98, 99]. Autophagy activators may offer selectivity in clearing misfolded TDP-43 [76, 79]; however, given the ability of TDP-43 to autoregulate, even nonselective clearance strategies hold promise for safely restoring TDP-43 proteostasis. [...] '''There are several intrinsic cellular mechanisms that can act to either prevent or resolve protein misfolding, namely the chaperone system, autophagy, and the UPS.''' The chaperone system maintains proper protein folding during synthesis and thereafter, or delivers misfolded substrates for degradation [161]. '''In the case of TDP-43, the chaperone heat shock protein (Hsp)90 enhances solubility (i.e., folding) [162], while [[HspB8]] promotes autophagic clearance of aggregated TDP-43 [163]. Potentiated forms of the disaggregase [[Hsp104]] can mediate TDP-43 refolding [161].''' Monomeric misfolded TDP-43 is likely handled by the UPS [76]'' {{#pmid:25652699|Scotter2015}}
+
''Certainly, small molecule activators of the UPS or autophagy have been shown to promote TDP-43 clearance and/or mitigate toxicity in models based on TDP-43 overexpression [66, 77, 98, 99]. Autophagy activators may offer selectivity in clearing misfolded TDP-43 [76, 79]; however, given the ability of TDP-43 to autoregulate, even nonselective clearance strategies hold promise for safely restoring TDP-43 proteostasis. [...] '''There are several intrinsic cellular mechanisms that can act to either prevent or resolve protein misfolding, namely the chaperone system, autophagy, and the UPS.''' The chaperone system maintains proper protein folding during synthesis and thereafter, or delivers misfolded substrates for degradation [161]. '''In the case of TDP-43, the chaperone heat shock protein (Hsp)90 enhances solubility (i.e., folding) [162], while HspB8 promotes autophagic clearance of aggregated TDP-43 [163]. Potentiated forms of the disaggregase Hsp104 can mediate TDP-43 refolding [161].''' Monomeric misfolded TDP-43 is likely handled by the UPS [76]'' {{#pmid:25652699|Scotter2015}}
  
 
''The aggregation of RNA-binding proteins is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RBM45 is an RNA-binding protein that forms cytoplasmic inclusions in neurons and glia in ALS and FTLD. To explore the role of RBM45 in ALS and FTLD, we examined the contribution of the protein’s domains to its function, subcellular localization, and interaction with itself and ALS-linked proteins. '''We find that RBM45 forms homo-oligomers and physically associates with the ALS-linked proteins TDP-43 and FUS in the nucleus. Nuclear localization of RBM45 is mediated by a bipartite nuclear-localization sequence (NLS) located at the C-terminus. RBM45 mutants that lack a functional NLS accumulate in the cytoplasm and form TDP-43 positive stress granules. Moreover, we identify a novel structural element, termed the homo-oligomer assembly (HOA) domain, that is highly conserved across species and promote homo-oligomerization of RBM45.''' RBM45 mutants that fail to form homo-oligomers exhibit significantly reduced association with ALS-linked proteins and inclusion into stress granules. These results show that RMB45 may function as a homo-oligomer and that its oligomerization contributes to ALS/FTLD RNA-binding protein aggregation.'' {{#pmid:26391765|Yang2015}}
 
''The aggregation of RNA-binding proteins is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). RBM45 is an RNA-binding protein that forms cytoplasmic inclusions in neurons and glia in ALS and FTLD. To explore the role of RBM45 in ALS and FTLD, we examined the contribution of the protein’s domains to its function, subcellular localization, and interaction with itself and ALS-linked proteins. '''We find that RBM45 forms homo-oligomers and physically associates with the ALS-linked proteins TDP-43 and FUS in the nucleus. Nuclear localization of RBM45 is mediated by a bipartite nuclear-localization sequence (NLS) located at the C-terminus. RBM45 mutants that lack a functional NLS accumulate in the cytoplasm and form TDP-43 positive stress granules. Moreover, we identify a novel structural element, termed the homo-oligomer assembly (HOA) domain, that is highly conserved across species and promote homo-oligomerization of RBM45.''' RBM45 mutants that fail to form homo-oligomers exhibit significantly reduced association with ALS-linked proteins and inclusion into stress granules. These results show that RMB45 may function as a homo-oligomer and that its oligomerization contributes to ALS/FTLD RNA-binding protein aggregation.'' {{#pmid:26391765|Yang2015}}

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: