Editing Stress granules

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 40: Line 40:
 
''TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontaneous SGs and are not recruited to arsenite-induced SGs, whereas the PRD forms aggregates that are recruited to SGs in low-level-expressing cells but prevent SG assembly in high-level-expressing cells. The PRD of TIA-1 exhibits many characteristics of prions: concentration-dependent aggregation that is inhibited by the molecular chaperone heat shock protein (HSP)70; resistance to protease digestion; sequestration of HSP27, HSP40, and HSP70; and induction of HSP70, a feedback regulator of PRD disaggregation. Substitution of the PRD with the aggregation domain of a yeast prion, SUP35-NM, reconstitutes SG assembly, confirming that a prion domain can mediate the assembly of SGs. Mouse embryomic fibroblasts (MEFs) lacking TIA-1 exhibit impaired ability to form SGs, although they exhibit normal phosphorylation of eukaryotic initiation factor (eIF)2alpha in response to arsenite. '''Our results reveal that prion-like aggregation of TIA-1 regulates SG formation downstream of eIF2alpha phosphorylation in response to stress.''''' {{#pmid:15371533|Gilks2004}}  
 
''TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontaneous SGs and are not recruited to arsenite-induced SGs, whereas the PRD forms aggregates that are recruited to SGs in low-level-expressing cells but prevent SG assembly in high-level-expressing cells. The PRD of TIA-1 exhibits many characteristics of prions: concentration-dependent aggregation that is inhibited by the molecular chaperone heat shock protein (HSP)70; resistance to protease digestion; sequestration of HSP27, HSP40, and HSP70; and induction of HSP70, a feedback regulator of PRD disaggregation. Substitution of the PRD with the aggregation domain of a yeast prion, SUP35-NM, reconstitutes SG assembly, confirming that a prion domain can mediate the assembly of SGs. Mouse embryomic fibroblasts (MEFs) lacking TIA-1 exhibit impaired ability to form SGs, although they exhibit normal phosphorylation of eukaryotic initiation factor (eIF)2alpha in response to arsenite. '''Our results reveal that prion-like aggregation of TIA-1 regulates SG formation downstream of eIF2alpha phosphorylation in response to stress.''''' {{#pmid:15371533|Gilks2004}}  
  
''Stress granules (SGs) are evolutionarily conserved ribonucleoprotein (RNP) structures that form in response to a variety of environmental and cellular cues. The presence of these RNP granules has been linked to a number of human diseases, including neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (Li et al., J Cell Biol 201:361-372, 2013; Nonhoff et al., Mol Biol Cell 18:1385-1396, 2007). Understanding how the assembly of these granules is controlled could, therefore, suggest possible routes of therapy for patients afflicted with these conditions. '''Interestingly, several reports have identified a potential role for protein deubiquitination in the assembly of these RNP granules. In particular, recent work has found that a specific deubiquitinase enzyme, Ubp3, is required for efficient SG formation in S. cerevisiae (Nostramo et al., Mol Cell Biol 36:173-183, 2016). This same enzyme has been linked to SGs in other organisms, including humans''' and the fission yeast, Schizosaccharomyces pombe (Takahashi et al., Mol Cell Biol 33:815-829, 2013; Wang et al., RNA 18:694-703, 2012). At first glance, these observations suggest that a striking degree of conservation exists for a ubiquitin-based mechanism controlling SG assembly. However, the devil is truly in the details here, as the precise nature of the involvement of this deubiquitinating enzyme seems to vary in each organism. Here, we briefly review these differences and attempt to provide an overarching model for the role of ubiquitin in SG formation.'' {{#pmid:26852120|Nostramo2016}}
+
''Stress granules (SGs) are evolutionarily conserved ribonucleoprotein (RNP) structures that form in response to a variety of environmental and cellular cues. The presence of these RNP granules has been linked to a number of human diseases, including neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (Li et al., J Cell Biol 201:361-372, 2013; Nonhoff et al., Mol Biol Cell 18:1385-1396, 2007). Understanding how the assembly of these granules is controlled could, therefore, suggest possible routes of therapy for patients afflicted with these conditions. Interestingly, several reports have identified a potential role for protein deubiquitination in the assembly of these RNP granules. In particular, recent work has found that a specific deubiquitinase enzyme, Ubp3, is required for efficient SG formation in S. cerevisiae (Nostramo et al., Mol Cell Biol 36:173-183, 2016). This same enzyme has been linked to SGs in other organisms, including humans and the fission yeast, Schizosaccharomyces pombe (Takahashi et al., Mol Cell Biol 33:815-829, 2013; Wang et al., RNA 18:694-703, 2012). At first glance, these observations suggest that a striking degree of conservation exists for a ubiquitin-based mechanism controlling SG assembly. However, the devil is truly in the details here, as the precise nature of the involvement of this deubiquitinating enzyme seems to vary in each organism. Here, we briefly review these differences and attempt to provide an overarching model for the role of ubiquitin in SG formation.'' {{#pmid:26852120|Nostramo2016}}
  
 
''Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. '''We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells.''' Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics.'' {{#pmid:26728149|Daigle2016}}
 
''Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. '''We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells.''' Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics.'' {{#pmid:26728149|Daigle2016}}

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: