MMP-9

From MyWiki
Revision as of 16:04, 13 November 2017 by Rmattila (talk | contribs)
Jump to: navigation, search

Key concepts in ALS

MMP-9 in ALS

Amyotrophic lateral sclerosis (ALS) mainly affects the motor neurons but may also include other organs such as the skin. We aimed to determine whether matrix metalloproteinases could provide a link between neuronal degeneration and skin alterations in ALS. We measured CSF, serum and skin tissue MMP-2 and MMP-9 using ELISA and malondialdehyde (MDA), a marker of lipid peroxidation, using High Performance Liquid Chromatography (HPLC) in 54 ALS patients and 36 controls. We found CSF and skin MMP-9 to be elevated in ALS as compared to controls (p<0.001, p=0.03, respectively). We observed CSF MMP-9 to be highest in patients with a rapid progressive course of disease (p=0.008). In contrast, we found no significant differences of CSF, serum or skin concentrations of MMP-2 as compared to controls. CSF MMP-2 concentrations decreased with duration of disease (p=0.04, R=-0.31). MDA was elevated in serum of ALS (p<0.001), though no correlation with MMP-2 or MMP-9 was observed. Our findings indicate a general upregulation of MMP-9 in ALS. MMP-9 seems to play a role in both neurodegeneration and skin changes in ALS and could thus be a common factor linking otherwise distant aspects of disease pathology. [1]

Inhibition

Ischemic stroke is a leading cause of disability worldwide. In cerebral ischemia there is an enhanced expression of matrix metallo-proteinase-9 (MMP-9), which has been associated with various complications including excitotoxicity, neuronal damage, apoptosis, blood-brain barrier (BBB) opening leading to cerebral edema, and hemorrhagic transformation. Moreover, the tissue plasminogen activator (tPA), which is the only US-FDA approved treatment of ischemic stroke, has a brief 3 to 4 h time window and it has been proposed that detrimental effects of tPA beyond the 3 h since the onset of stroke are derived from its ability to activate MMP-9 that in turn contributes to the breakdown of BBB. Therefore, the available literature suggests that MMP-9 inhibition can be of therapeutic importance in ischemic stroke. Hence, combination therapies of MMP-9 inhibitor along with tPA can be beneficial in ischemic stroke. In this review we will discuss the current status of various strategies which have shown neuroprotection and extension of thrombolytic window by directly or indirectly inhibiting MMP-9 activity. In the introductory part of the review, we briefly provide an overview on ischemic stroke, commonly used models of ischemic stroke and a role of MMP-9 in ischemia. In next part, the literature is organized as various approaches which have proven neuroprotective effects through direct or indirect decrease in MMP-9 activity, namely, using biotherapeutics, involving MMP-9 gene inhibition using viral vectors; using endogenous inhibitor of MMP-9, repurposing of old drugs such as minocycline, new chemical entities like DP-b99, and finally other approaches like therapeutic hypothermia. [2]

References

  1. Fang et al.: Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J. Neurol. Sci. 2009;285:62-6. PMID: 19523650. DOI. Amyotrophic lateral sclerosis (ALS) mainly affects the motor neurons but may also include other organs such as the skin. We aimed to determine whether matrix metalloproteinases could provide a link between neuronal degeneration and skin alterations in ALS. We measured CSF, serum and skin tissue MMP-2 and MMP-9 using ELISA and malondialdehyde (MDA), a marker of lipid peroxidation, using High Performance Liquid Chromatography (HPLC) in 54 ALS patients and 36 controls. We found CSF and skin MMP-9 to be elevated in ALS as compared to controls (p<0.001, p=0.03, respectively). We observed CSF MMP-9 to be highest in patients with a rapid progressive course of disease (p=0.008). In contrast, we found no significant differences of CSF, serum or skin concentrations of MMP-2 as compared to controls. CSF MMP-2 concentrations decreased with duration of disease (p=0.04, R=-0.31). MDA was elevated in serum of ALS (p<0.001), though no correlation with MMP-2 or MMP-9 was observed. Our findings indicate a general upregulation of MMP-9 in ALS. MMP-9 seems to play a role in both neurodegeneration and skin changes in ALS and could thus be a common factor linking otherwise distant aspects of disease pathology.
  2. Chaturvedi & Kaczmarek: Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol. Neurobiol. 2014;49:563-73. PMID: 24026771. DOI. Ischemic stroke is a leading cause of disability worldwide. In cerebral ischemia there is an enhanced expression of matrix metallo-proteinase-9 (MMP-9), which has been associated with various complications including excitotoxicity, neuronal damage, apoptosis, blood-brain barrier (BBB) opening leading to cerebral edema, and hemorrhagic transformation. Moreover, the tissue plasminogen activator (tPA), which is the only US-FDA approved treatment of ischemic stroke, has a brief 3 to 4 h time window and it has been proposed that detrimental effects of tPA beyond the 3 h since the onset of stroke are derived from its ability to activate MMP-9 that in turn contributes to the breakdown of BBB. Therefore, the available literature suggests that MMP-9 inhibition can be of therapeutic importance in ischemic stroke. Hence, combination therapies of MMP-9 inhibitor along with tPA can be beneficial in ischemic stroke. In this review we will discuss the current status of various strategies which have shown neuroprotection and extension of thrombolytic window by directly or indirectly inhibiting MMP-9 activity. In the introductory part of the review, we briefly provide an overview on ischemic stroke, commonly used models of ischemic stroke and a role of MMP-9 in ischemia. In next part, the literature is organized as various approaches which have proven neuroprotective effects through direct or indirect decrease in MMP-9 activity, namely, using biotherapeutics, involving MMP-9 gene inhibition using viral vectors; using endogenous inhibitor of MMP-9, repurposing of old drugs such as minocycline, new chemical entities like DP-b99, and finally other approaches like therapeutic hypothermia.