Editing MMP-9

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 12: Line 12:
  
 
''Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) share several clinical and neuropathologic features, and studies suggest that several gene mutations and polymorphisms are involved in both conditions. Matrix metalloproteinase-9 (MMP-9) is implicated in the pathogenesis of PD and ALS, and the C(-1562)T polymorphism in the MMP-9 gene leads to higher promoter activity. We therefore investigated whether this polymorphism predisposes to both PD and sporadic ALS (sALS). Samples from 351 subjects with PD and 351 healthy controls from two major cities in China were compared, while samples from 226 subjects with sALS were compared to the same number of controls from three centers in China. A possible association between the C(-1562)T polymorphism in the MMP-9 gene and PD or sALS was assessed by restriction fragment length polymorphism (RFLP) analysis. '''Our results show a significant association between the C(-1562)T polymorphism in the MMP-9 gene and risk of PD (odds ratio = 2.268, 95% CI 1.506-3.416, p<0.001) as well as risk of sALS (odds ratio = 2.163, 95% CI 1.233-3.796, p = 0.006), supporting a role for MMP-9 polymorphism in the risk for PD and sALS.''''' {{#pmid:24040066|he2013}}
 
''Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) share several clinical and neuropathologic features, and studies suggest that several gene mutations and polymorphisms are involved in both conditions. Matrix metalloproteinase-9 (MMP-9) is implicated in the pathogenesis of PD and ALS, and the C(-1562)T polymorphism in the MMP-9 gene leads to higher promoter activity. We therefore investigated whether this polymorphism predisposes to both PD and sporadic ALS (sALS). Samples from 351 subjects with PD and 351 healthy controls from two major cities in China were compared, while samples from 226 subjects with sALS were compared to the same number of controls from three centers in China. A possible association between the C(-1562)T polymorphism in the MMP-9 gene and PD or sALS was assessed by restriction fragment length polymorphism (RFLP) analysis. '''Our results show a significant association between the C(-1562)T polymorphism in the MMP-9 gene and risk of PD (odds ratio = 2.268, 95% CI 1.506-3.416, p<0.001) as well as risk of sALS (odds ratio = 2.163, 95% CI 1.233-3.796, p = 0.006), supporting a role for MMP-9 polymorphism in the risk for PD and sALS.''''' {{#pmid:24040066|he2013}}
 
== Upregulators ==
 
  
 
''Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. '''Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase-9 (MMP-9), which degrades the matrix and leads to blood-brain barrier dysfunction.''' Hcy competitively binds to gamma-aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA-A receptor in Hcy-induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP-9 activity via the extracellular signal-regulated kinase (ERK) signaling pathway and by inhibition of GABA-A receptors, thus behaving as an inhibitory neurotransmitter. Hcy-induced reactive oxygen species production was detected using the fluorescent probe, 2'-7'-dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate-oxidase-4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP-9, measured by gelatin zymography. The GABA-A receptor agonist, muscimol ameliorated the Hcy-mediated MMP-9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase-4 (TIMP-4). Treatment of the endothelial cell with muscimol restored the levels of TIMP-4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy-induced MMP-9 via ERK signaling pathway. These results suggest that Hcy competes with GABA-A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation.'' {{#pmid:19308943|tyagi2009}}
 
''Hyperhomocysteinemia (HHcy) is a risk factor for neuroinflammatory and neurodegenerative diseases. '''Homocysteine (Hcy) induces redox stress, in part, by activating matrix metalloproteinase-9 (MMP-9), which degrades the matrix and leads to blood-brain barrier dysfunction.''' Hcy competitively binds to gamma-aminbutyric acid (GABA) receptors, which are excitatory neurotransmitter receptors. However, the role of GABA-A receptor in Hcy-induced cerebrovascular remodeling is not clear. We hypothesized that Hcy causes cerebrovascular remodeling by increasing redox stress and MMP-9 activity via the extracellular signal-regulated kinase (ERK) signaling pathway and by inhibition of GABA-A receptors, thus behaving as an inhibitory neurotransmitter. Hcy-induced reactive oxygen species production was detected using the fluorescent probe, 2'-7'-dichlorodihydrofluorescein diacetate. Hcy increased nicotinamide adenine dinucleotide phosphate-oxidase-4 concomitantly suppressing thioredoxin. Hcy caused activation of MMP-9, measured by gelatin zymography. The GABA-A receptor agonist, muscimol ameliorated the Hcy-mediated MMP-9 activation. In parallel, Hcy caused phosphorylation of ERK and selectively decreased levels of tissue inhibitors of metalloproteinase-4 (TIMP-4). Treatment of the endothelial cell with muscimol restored the levels of TIMP-4 to the levels in control group. Hcy induced expression of iNOS and decreased eNOS expression, which lead to a decreased NO bioavailability. Furthermore muscimol attenuated Hcy-induced MMP-9 via ERK signaling pathway. These results suggest that Hcy competes with GABA-A receptors, inducing the oxidative stress transduction pathway and leading to ERK activation.'' {{#pmid:19308943|tyagi2009}}
 
''MMP-9, a member of the matrix metalloproteinase family that degrades collagen IV and processes chemokines and cytokines, participates in epidermal remodeling in response to stress and injury. Limited activity of MMP-9 is essential while excessive activity is deleterious to the healing process. '''Tumor necrosis factor (TNFalpha), a key mediator of cutaneous inflammation, is a powerful inducer of MMP-9.''' Calcitriol, the hormonally active vitamin D metabolite, and its analogs are known to attenuate epidermal inflammation. We aimed to examine the modulation of MMP-9 by calcitriol in TNFalpha-treated keratinocytes. The immortalized HaCaT keratinocytes were treated with TNFalpha in the absence of exogenous growth factors or active ingredients. MMP-9 production was quantified by gelatin zymography and real-time RT-PCR. Activation of signaling cascades was assessed by western blot analysis and DNA-binding activity of transcription factors was determined by EMSA. '''Exposure to TNFalpha markedly increased the protein and mRNA levels of MMP-9, while pretreatment with calcitriol dose dependently reduced this effect. Employing specific inhibitors we established that the induction of MMP-9 by TNFalpha was dependent on the activity of the epidermal growth factor receptor, c-Jun-N-terminal kinase (JNK), NFkappaB and extracellular signal-regulated kinase-1/2.''' The effect of calcitriol was associated with inhibition of JNK activation and reduction of DNA-binding activities of the transcription factors activator protein-1 (AP-1) and NFkappaB following treatment with TNFalpha. '''By down-regulating MMP-9 levels active vitamin D derivatives may attenuate deleterious effects due to excessive TNFalpha-induced proteolytic activity associated with cutaneous inflammation.''''' {{#pmid:20020446|bahar2010}}
 
  
 
== Inhibition ==
 
== Inhibition ==

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: