Potentially Actionable Research

From MyWiki
Jump to: navigation, search

Research paper Point of Interest Suggested Action
Molybdenum Deficiency Produces Motor Nervous Effects That Are Consistent with Amyotrophic Lateral Sclerosis, https://doi.org/10.3389/fneur.2016.00028 Molybdenum deficiency with inosine causes an ALS like disease in animals Consider daily supplementation 75 mcg sodium molybdate. Check diet for high molybdenum foods. http://www.whfoods.com/genpage.php?tname=nutrient&dbid=128 More:Molybdenum deficiency
Clinical and biological changes under treatment with lithium carbonate and valproic acid in sporadic amyotrophic lateral sclerosis. [1] Lithium administered together with valproate prolonged patient survival in a statistically limited study. Discuss with your neurologist about the possibility of trying the said combination. The dosage used in the referred study was 300 mg of each drug three times a day.
Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. [2] Acetyl L-carnitine (ALCAR) showed signs of efficacy in a statistically limited trial. Consider ALCAR supplementation.
  1. Boll et al.: Clinical and biological changes under treatment with lithium carbonate and valproic acid in sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 2014;340:103-8. PMID: 24667005. DOI. The aim of this study was to evaluate the ability of lithium carbonate and valproate cotreatment to modify the survival rate and functional score of patients with definite sporadic amyotrophic lateral sclerosis (ALS). The clinical response of 18 enrolled patients was compared to the evolution of 31 ALS out-patients, carefully paired by age, gender, evolution rate and time of the disease, who never received treatment with lithium and/or valproate. The ALS functional rating scale, revised version (ALSFRS-R), was applied at baseline, 1 month, and every 4 months until the outcome (death or an adverse event). Biochemical markers, such as Cu/Zn superoxide dismutase and glutathione peroxidase activity, and reduced glutathione were assayed in plasma samples obtained at the baseline visit and after 5 and 9 months of treatment. Our results showed that lithium and valproate cotreatment significantly increased survival (p=0.016), and this treatment also exerted neuroprotection in our patients because all three markers reached levels that were not significantly different from the matched samples of healthy donors. The trial stopped after 21 months, when the sample was reduced to under two-thirds, due to the late adverse events of the treatment. The results call for large randomized clinical trials with the dual association, but at low doses to avoid adverse events.
  2. Beghi et al.: Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for ALS. Amyotroph Lateral Scler Frontotemporal Degener 2013;14:397-405. PMID: 23421600. DOI. Our objective was to assess the effects of acetyl-L-carnitine (ALC) with riluzole on disability and mortality of amyotrophic lateral sclerosis (ALS). Definite/probable ALS patients, 40-70 years of age, duration 6-24 months, self-sufficient (i.e. able to swallow, cut food/handle utensils, and walk), and with forced vital capacity (FVC) > 80% entered a pilot double-blind, placebo-controlled, parallel group trial and were followed for 48 weeks. ALC or placebo 3 g/day was added to riluzole 100 mg/day. Primary endpoint: number of patients no longer self-sufficient. Secondary endpoints: changes in ALSFRS-R, MRC, FVC and McGill Quality of Life (QoL) scores. Analysis was made in the intention-to-treat (ITT) and per-protocol (PP) population, completers and completers/compliers (i.e. taking > 75% of study drug). Forty-two patients received ALC and 40 placebo. In the ITT population, 34 (80.9%) patients receiving ALC and 39 (97.5%) receiving placebo became non-self-sufficient (p = 0.0296). In the PP analysis, percentages were 84.4 and 100.0% (p = 0.0538), respectively. Mean ALSFRS-R scores at 48 weeks were 33.6 (SD 10.4) and 27.6 (9.9) (p = 0.0388), respectively, and mean FVC scores 90.3 (32.6) and 58.6 (31.2) (p = 0.0158), respectively. Median survival was 45 months (ALC) and 22 months (placebo) (p = 0.0176). MRC, QoL and adverse events were similar. In conclusion, ALC may be effective, well-tolerated and safe in ALS. A pivotal phase III trial is needed.