Editing Vitamin K2

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 71: Line 71:
  
 
Mitochondrial dysfunction is an important mechanism in the pathogenesis of neurodegenerative diseases such as Parkinson disease and amyotrophic lateral sclerosis (ALS). DJ-1 and PTEN-induced putative kinase 1 (PINK1) are important proteins for the maintenance of mitochondrial function and protection against cell death. Mutations in the genes coding for these proteins cause familial forms of Parkinson disease. Recent studies have postulated that changes in the expression of both proteins are also involved in pathologic mechanisms in ALS mouse models. Here, we studied the mRNA and protein expression of PINK1 and DJ-1 in postmortem brain and spinal cord tissue and muscle biopsy samples from ALS patients and controls and in brain, spinal cord, and gastrocnemius muscle of SOD1(G93A) ALS mice at different disease stages. We found significant decreases of PINK1 and DJ-1 mRNA levels in muscle tissue of SOD1(G93A) mice. Together with the significant decrease of PINK1 mRNA levels in human ALS muscle tissue, statistically nonsignificant reduction of DJ-1 mRNA levels, and reduced immunostaining for PINK1 in human ALS muscle, the results suggest potential pathophysiologic roles for these proteins in both mutant SOD1 transgenic mice and in sporadic ALS(G93A).
 
Mitochondrial dysfunction is an important mechanism in the pathogenesis of neurodegenerative diseases such as Parkinson disease and amyotrophic lateral sclerosis (ALS). DJ-1 and PTEN-induced putative kinase 1 (PINK1) are important proteins for the maintenance of mitochondrial function and protection against cell death. Mutations in the genes coding for these proteins cause familial forms of Parkinson disease. Recent studies have postulated that changes in the expression of both proteins are also involved in pathologic mechanisms in ALS mouse models. Here, we studied the mRNA and protein expression of PINK1 and DJ-1 in postmortem brain and spinal cord tissue and muscle biopsy samples from ALS patients and controls and in brain, spinal cord, and gastrocnemius muscle of SOD1(G93A) ALS mice at different disease stages. We found significant decreases of PINK1 and DJ-1 mRNA levels in muscle tissue of SOD1(G93A) mice. Together with the significant decrease of PINK1 mRNA levels in human ALS muscle tissue, statistically nonsignificant reduction of DJ-1 mRNA levels, and reduced immunostaining for PINK1 in human ALS muscle, the results suggest potential pathophysiologic roles for these proteins in both mutant SOD1 transgenic mice and in sporadic ALS(G93A).
 
[[Category:Supplement data pages]]
 

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: