Trimethylglycide (TMG)

From MyWiki
Revision as of 19:44, 10 January 2017 by Admin (talk | contribs)
Jump to: navigation, search

Information on nutritional supplements people with ALS have been taking

Effects on ALS

Examine.com: The main mechanisms of betaine are either its usage as a methyl donor, where it either directly donates a methyl group to reduce homocysteine into L-methionine (seen as cardioprotective) or it increases bodily levels of S-Adenosyl Methionine (SAMe) or active folate molecules, and those two can then go on to donate methyl groups to other parts of the body. Due to this, supplementation of betaine is able to indirectly support whole-body methylation, and directly support a reduction in homocysteine (which is reliably observed following moderate to high dose supplementation. The other major mechanism is that betaine is as an osmolyte, or a molecule that is shuttled in and out of a cell to affect its hydration status. Similar to Creatine, increased intracellular concentrations of betaine promote cell hydration and resilience to stressors.

Significant lowering of homocysteine concentration after the drinking period was found in subjects with concurrent folate and betaine supplementation. Vitamin B12 and vitamin B₆ supplementation did not lead to a statistically significant change in homocysteine. According to a multiple linear regression model, the homocysteine change in the wine-only group was mainly determined by the interaction between the higher baseline homocysteine concentration and the change in dimethylglycine levels. Folate and betaine can attenuate possible adverse effects of moderate alcohol consumption. Dimethylglycine should be interpreted together with data on alcohol consumption and homocysteine concentration.[1]

Discussion threads on the ALSTDI forum

References

  1. Rajdl et al.: Effect of Folic Acid, Betaine, Vitamin B₆, and Vitamin B12 on Homocysteine and Dimethylglycine Levels in Middle-Aged Men Drinking White Wine. Nutrients 2016;8:. PMID: 26771632. DOI. UNLABELLED: Moderate regular consumption of alcoholic beverages is believed to protect against atherosclerosis but can also increase homocysteine or dimethylglycine, which are putative risk factors for atherosclerosis. We aimed (1) to investigate the effect of alcohol consumption on vitamins and several metabolites involved in one-carbon metabolism; and (2) to find the most effective way of decreasing homocysteine during moderate alcohol consumption. METHODS: Male volunteers (n = 117) were randomly divided into five groups: the wine-only group (control, 375 mL of white wine daily for one month) and four groups combining wine consumption with one of the supplemented substances (folic acid, betaine, and vitamins B12 or B₆). Significant lowering of homocysteine concentration after the drinking period was found in subjects with concurrent folate and betaine supplementation. Vitamin B12 and vitamin B₆ supplementation did not lead to a statistically significant change in homocysteine. According to a multiple linear regression model, the homocysteine change in the wine-only group was mainly determined by the interaction between the higher baseline homocysteine concentration and the change in dimethylglycine levels. Folate and betaine can attenuate possible adverse effects of moderate alcohol consumption. Dimethylglycine should be interpreted together with data on alcohol consumption and homocysteine concentration.