Editing Luteolin

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 5: Line 5:
 
== Effects on ALS ==
 
== Effects on ALS ==
  
''Apigenin and luteolin concentration-dependently suppressed IFN-γ-induced CD40 expression. Apigenin and luteolin also suppressed microglial TNF-α and IL-6 production stimulated by IFN-gamma challenge in the presence of CD40 ligation. In addition, apigenin and luteolin markedly inhibited IFN-γ-induced phosphorylation of STAT1 with little impact on cell survival.''{{#pmid:18817573|Rezaizadeh2008}}
+
Apigenin and luteolin concentration-dependently suppressed IFN-γ-induced CD40 expression. Apigenin and luteolin also suppressed microglial TNF-α and IL-6 production stimulated by IFN-gamma challenge in the presence of CD40 ligation. In addition, apigenin and luteolin markedly inhibited IFN-γ-induced phosphorylation of STAT1 with little impact on cell survival. [1]
  
 
''Luteolin concentration-dependently abolished LPS/IFN-γ-induced NO, tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) production as well as inducible nitric oxide synthase (iNOS) protein and mRNA expression. Luteolin exerted an inhibitory effect on transcription factor activity including nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF-1) in LPS/IFN-γ-activated BV-2 microglial cells. Biochemical and pharmacological studies revealed that the anti-inflammatory effect of luteolin was accompanied by down-regulation of extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), Akt and Src.''{{#pmid:21036586|Kao2011}}
 
''Luteolin concentration-dependently abolished LPS/IFN-γ-induced NO, tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) production as well as inducible nitric oxide synthase (iNOS) protein and mRNA expression. Luteolin exerted an inhibitory effect on transcription factor activity including nuclear factor κB (NF-κB), signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF-1) in LPS/IFN-γ-activated BV-2 microglial cells. Biochemical and pharmacological studies revealed that the anti-inflammatory effect of luteolin was accompanied by down-regulation of extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), Akt and Src.''{{#pmid:21036586|Kao2011}}

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: