EGCG

From MyWiki
Revision as of 17:23, 21 April 2017 by Leevi (talk | contribs)
Jump to: navigation, search

Epigallocatechin gallate (EGCG) is a constituent of green tea, and increasing evidence suggests that EGCG has neuroprotective effects on oxidative stress-injured neuronal cells, especially motoneurons.

EGCG and ALS

"The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of ALS ... oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-kappaB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-kappaB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS."[1]

"We treated each group of 11 ALS model mice with EGCG ... and one group of 11 ... (control group) intraorally every day after 60 days of age (presymptomatic treatment). The treatment of more than 2.9 microg EGCG/g body weight significantly prolonged the symptom onset and life span, preserved more survival signals, and attenuated death signals. These data suggest that EGCG could be a potential therapeutic candidate for ALS as a disease-modifying agent."[2]

References

  1. Xu et al.: Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res. 2006;31:1263-9. PMID: 17021948. DOI. The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of Amyotrophic lateral sclerosis (ALS). SOD1-G93A transgenic mice and wild-type mice were randomly divided into EGCG-treated groups (10 mg/kg, p.o) and vehicle-treated control groups. Rotarod measurement was performed to assess the motor function of mice starting at the age of 70 days. Nissl staining to examine the number of motor neurons and CD11b immunohistochemical staining to evaluate activation of microglia in the lumbar spinal cords were conducted at the age of 120 days. In addition, for further observation of regulation of cell signaling pathways by EGCG, we used immunohistochemical analysis for nuclear factor kappa B (NF-kappaB) and cleaved caspase-3 as well as western blot analysis to determine the expression of nitric oxide synthase (iNOS) and NF-kappaB in the spinal cord. This study demonstrated that oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-kappaB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-kappaB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS.
  2. Koh et al.: The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett. 2006;395:103-7. PMID: 16356650. DOI. Epigallocatechin gallate (EGCG) is a constituent of green tea, and increasing evidence suggests that EGCG has neuroprotective effects on oxidative stress-injured neuronal cells, especially motoneurons. Although the neuroprotective effects of EGCG have been demonstrated in Parkinson's and Alzheimer's diseases and ischemic stroke models, there has been no report on the effect of EGCG on an in vivo model of amyotrophic lateral sclerosis (ALS). This study was undertaken to evaluate the effect of EGCG on ALS model mice with the human G93A mutated Cu/Zn-superoxide dismutase (SOD1) gene. We treated each group of 11 ALS model mice with EGCG (1.5, 2.9, and 5.8 microg/g body weight), dissolved in 0.5 ml of 0.9% sterile NaCl, and one group of 11 with 0.5 ml of 0.9% sterile NaCl (control group) intraorally every day after 60 days of age (presymptomatic treatment). The treatment of more than 2.9 microg EGCG/g body weight significantly prolonged the symptom onset and life span, preserved more survival signals, and attenuated death signals. These data suggest that EGCG could be a potential therapeutic candidate for ALS as a disease-modifying agent.