Editing EGCG

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
 
Epigallocatechin gallate (EGCG) is a constituent of green tea, and increasing evidence suggests that EGCG has neuroprotective effects on oxidative stress-injured neuronal cells, especially motoneurons.
 
  
 
==EGCG and ALS==
 
==EGCG and ALS==
 
"Accumulation of iron at sites where neurons degenerate in Parkinson's disease (PD) and Alzheimer's disease (AD) is thought to have a major role in oxidative stress induced process of neurodegeneration. The novel non-toxic lipophilic brain- permeable iron chelators, VK-28 (5- [4- (2- hydroxyethyl) piperazine-1-ylmethyl]- quinoline- 8- ol) and its multi-functional derivative, M-30 (5-[N-methyl-N-propargylaminomethyl]-8-hydroxyquinoline), as well as the main polyphenol constituent of green tea '''(-)-epigallocatechin-3-gallate (EGCG), which possesses iron metal chelating, radical scavenging and neuroprotective properties''', offer potential therapeutic benefits for these diseases. M-30 and '''EGCG decreased apoptosis of human SH-SY5Y neuroblastoma cells in a neurorescue, serum deprivation model, via multiple protection mechanisms including: reduction of the pro-apoptotic proteins, Bad and Bax, reduction of apoptosis-associated Ser139 phosphorylated H2A.X and inhibition of the cleavage and activation of caspase-3'''. M-30 and '''EGCG also promoted morphological changes, resulting in axonal growth-associated protein-43 (GAP-43) implicating neuronal differentiation'''. Both compounds '''significantly reduced the levels of cellular holo-amyloid precursor protein (APP) in SH-SY5Y cells'''. The ability of theses novel iron chelators and EGCG to regulate APP are in line with the presence of an iron-responsive element (IRE) in the 5'-untranslated region (5'UTR) of APP. Also, EGCG reduced the levels of toxic amyloid-beta peptides in CHO cells over-expressing the APP "Swedish" mutation. The diverse molecular mechanisms and cell signaling pathways participating in the neuroprotective/neurorescue and APP regulation/processing actions of M-30 and EGCG, make these multifunctional compounds '''potential neuroprotective drugs for the treatment of neurodegenerative diseases, such as PD, AD, Huntington's disease and ALS'''"{{#pmid: 17908043 |Avramovich-Tirosh2007}}
 
  
 
"The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of ALS ... oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-kappaB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-kappaB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS."{{#pmid:17021948|Xu2006}}
 
"The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of ALS ... oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-kappaB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-kappaB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS."{{#pmid:17021948|Xu2006}}
 
"We treated each group of 11 ALS model mice with EGCG ... and one group of 11 ... (control group) intraorally every day after 60 days of age (presymptomatic treatment). The treatment of more than 2.9 microg EGCG/g body weight significantly prolonged the symptom onset and life span, preserved more survival signals, and attenuated death signals. These data suggest that EGCG could be a potential therapeutic candidate for ALS as a disease-modifying agent."{{#pmid: 16356650 |Koh2006}}
 
 
''In conclusion, EGCG leads to a decrease in oxidative stress levels, leading to motor neuron protection in the organotypic culture of a rat spinal cord; however, EGCG does not alter iron metabolism protein expression regulation.'' {{#pmid:28677731|che2017}}
 
  
 
==References==
 
==References==
 
[[Category:Supplement data pages]]
 

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: