Editing Aberrant astrocytes

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 1: Line 1:
 
[[Key concepts in ALS]]
 
[[Key concepts in ALS]]
  
''ALS is a paradigmatic neurodegenerative disease, characterized by progressive paralysis of skeletal muscles associated with motor neuron degeneration. It is well-established that glial cells play a key role in ALS pathogenesis. In transgenic rodent models for familial ALS reactive astrocytes, microglia and oligodendrocyte precursors accumulate in the degenerating spinal cord and appear to contribute to primary motor neuron death through a non-cell autonomous pathogenic mechanism. Furthermore in rats expressing the ALS-linked SOD1G93A mutation, rapid spread of paralysis coincides with emergence of neurotoxic and proliferating aberrant glia cells with an astrocyte-like phenotype (AbA cells) that are found surrounding damaged motor neurons. AbAs simultaneously express astrocytic markers GFAP, S100β and Connexin-43 along with microglial markers Iba-1, CD11b and CD163. '''Studies with cell cultures have shown that AbAs originate from inflammatory microglial cells that undergo phenotypic transition. Because AbAs appear only after paralysis onset and exponentially increase in parallel with disease progression, they appear to actively contribute to ALS progression.''' While several reviews have been published on the pathogenic role of glial cells in ALS, this review focuses on emergence and pro-inflammatory activity of AbAs as part of an increasingly complex neurodegenerative microenvironment during ALS disease development.''{{#pmid:27473942|Trias2016}}
+
''Amyotrophic Lateral Sclerosis (ALS) is a paradigmatic neurodegenerative disease, characterized by progressive paralysis of skeletal muscles associated with motor neuron degeneration. It is well-established that glial cells play a key role in ALS pathogenesis. In transgenic rodent models for familial ALS reactive astrocytes, microglia and oligodendrocyte precursors accumulate in the degenerating spinal cord and appear to contribute to primary motor neuron death through a non-cell autonomous pathogenic mechanism. Furthermore in rats expressing the ALS-linked SOD1G93A mutation, rapid spread of paralysis coincides with emergence of neurotoxic and proliferating aberrant glia cells with an astrocyte-like phenotype (AbA cells) that are found surrounding damaged motor neurons. AbAs simultaneously express astrocytic markers GFAP, S100β and Connexin-43 along with microglial markers Iba-1, CD11b and CD163. '''Studies with cell cultures have shown that AbAs originate from inflammatory microglial cells that undergo phenotypic transition. Because AbAs appear only after paralysis onset and exponentially increase in parallel with disease progression, they appear to actively contribute to ALS progression.''' While several reviews have been published on the pathogenic role of glial cells in ALS, this review focuses on emergence and pro-inflammatory activity of AbAs as part of an increasingly complex neurodegenerative microenvironment during ALS disease development.''{{#pmid:27473942|Trias2016}}
  
 
''Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that '''media conditioned by astrocytes carrying mutant SOD1(G93A) contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Na v ) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity.''' Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1(G93A) and ACM-SOD1(G86R)) or TDP43 (ACM-TDP43(A315T)) mutants; we show that such exposure rapidly (within 30-60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. '''Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Na v channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death.''' Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Na v channel activity.''{{#pmid:24570655|Rojas2014}}
 
''Astrocytes expressing mutant SOD1 are strongly implicated in the pathogenesis of ALS: we have shown that '''media conditioned by astrocytes carrying mutant SOD1(G93A) contains toxic factor(s) that kill motoneurons by activating voltage-sensitive sodium (Na v ) channels. In contrast, a recent study suggests that astrocytes expressing mutated TDP43 contribute to ALS pathology, but do so via cell-autonomous processes and lack non-cell-autonomous toxicity.''' Here we investigate whether astrocytes that express diverse ALS-causing mutations release toxic factor(s) that induce motoneuron death, and if so, whether they do so via a common pathogenic pathway. We exposed primary cultures of wild-type spinal cord cells to conditioned medium derived from astrocytes (ACM) that express SOD1 (ACM-SOD1(G93A) and ACM-SOD1(G86R)) or TDP43 (ACM-TDP43(A315T)) mutants; we show that such exposure rapidly (within 30-60 min) increases dichlorofluorescein (DCF) fluorescence (indicative of nitroxidative stress) and leads to extensive motoneuron-specific death within a few days. '''Co-application of the diverse ACMs with anti-oxidants Trolox or esculetin (but not with resveratrol) strongly improves motoneuron survival. We also find that co-incubation of the cultures in the ACMs with Na v channel blockers (including mexiletine, spermidine, or riluzole) prevents both intracellular nitroxidative stress and motoneuron death.''' Together, our data document that two completely unrelated ALS models lead to the death of motoneuron via non-cell-autonomous processes, and show that astrocytes expressing mutations in SOD1 and TDP43 trigger such cell death through a common pathogenic pathway that involves nitroxidative stress, induced at least in part by Na v channel activity.''{{#pmid:24570655|Rojas2014}}
Line 14: Line 14:
  
 
''Recent evidence suggests that factors secreted by activated astrocytes might contribute to degeneration of MNs. We focused on endothelin-1 (ET-1), a peptide which is strongly up-regulated in reactive astrocytes under different pathological conditions. We show that ET-1 is abundantly expressed by reactive astrocytes in the spinal cord of the SOD1-G93A mouse model and sporadic ALS patients. To test if ET-1 might play a role in degeneration of MNs, we investigated its effect on MN survival in an in vitro model of mixed rat spinal cord cultures (MSCs) enriched of astrocytes exhibiting a reactive phenotype. ET-1 exerted a toxic effect on MNs in a time- and concentration-dependent manner, with an exposure to 100-200nM ET-1 for 48h resulting in 40-50% MN cell death. Importantly, ET-1 did not induce MN degeneration when administered on cultures treated with AraC (5μM) or grown in a serum-free medium that did not favor astrocyte proliferation and reactivity. We found that both ETA and ETB receptors are enriched in astrocytes in MSCs. The ET-1 toxic effect was mimicked by ET-3 (100nM) and sarafotoxin S6c (10nM), two selective agonists of endothelin-B receptors, and was not additive with that of ET-3 suggesting the involvement of ETB receptors. Surprisingly, however, the ET-1 effect persisted in the presence of the ETB receptor antagonist BQ-788 (200nM-2μM) and was slightly reversed by the ETA receptor antagonist BQ-123 (2μM), suggesting an atypical pharmacological profile of the astrocytic receptors responsible for ET-1 toxicity. The ET-1 effect was not undone by the ionotropic glutamate receptor AMPA antagonist GYKI 52466 (20μM), indicating that it is not caused by an increased glutamate release. Conversely, a 48-hour ET-1 treatment increased MN cell death induced by acute exposure to AMPA (50μM), which is indicative of two distinct pathways leading to neuronal death. Altogether these results indicate that ET-1 exerts a toxic effect on cultured MNs through mechanisms mediated by reactive astrocytes and suggest that ET-1 may contribute to MN degeneration in ALS. Thus, a treatment aimed at lowering ET-1 levels or antagonizing its effect might be envisaged as a potential therapeutic strategy to slow down MN degeneration in this devastating disease.''{{#pmid:24423643|Ranno2014}}
 
''Recent evidence suggests that factors secreted by activated astrocytes might contribute to degeneration of MNs. We focused on endothelin-1 (ET-1), a peptide which is strongly up-regulated in reactive astrocytes under different pathological conditions. We show that ET-1 is abundantly expressed by reactive astrocytes in the spinal cord of the SOD1-G93A mouse model and sporadic ALS patients. To test if ET-1 might play a role in degeneration of MNs, we investigated its effect on MN survival in an in vitro model of mixed rat spinal cord cultures (MSCs) enriched of astrocytes exhibiting a reactive phenotype. ET-1 exerted a toxic effect on MNs in a time- and concentration-dependent manner, with an exposure to 100-200nM ET-1 for 48h resulting in 40-50% MN cell death. Importantly, ET-1 did not induce MN degeneration when administered on cultures treated with AraC (5μM) or grown in a serum-free medium that did not favor astrocyte proliferation and reactivity. We found that both ETA and ETB receptors are enriched in astrocytes in MSCs. The ET-1 toxic effect was mimicked by ET-3 (100nM) and sarafotoxin S6c (10nM), two selective agonists of endothelin-B receptors, and was not additive with that of ET-3 suggesting the involvement of ETB receptors. Surprisingly, however, the ET-1 effect persisted in the presence of the ETB receptor antagonist BQ-788 (200nM-2μM) and was slightly reversed by the ETA receptor antagonist BQ-123 (2μM), suggesting an atypical pharmacological profile of the astrocytic receptors responsible for ET-1 toxicity. The ET-1 effect was not undone by the ionotropic glutamate receptor AMPA antagonist GYKI 52466 (20μM), indicating that it is not caused by an increased glutamate release. Conversely, a 48-hour ET-1 treatment increased MN cell death induced by acute exposure to AMPA (50μM), which is indicative of two distinct pathways leading to neuronal death. Altogether these results indicate that ET-1 exerts a toxic effect on cultured MNs through mechanisms mediated by reactive astrocytes and suggest that ET-1 may contribute to MN degeneration in ALS. Thus, a treatment aimed at lowering ET-1 levels or antagonizing its effect might be envisaged as a potential therapeutic strategy to slow down MN degeneration in this devastating disease.''{{#pmid:24423643|Ranno2014}}
 +
  
 
==References==
 
==References==
 
[[Category:Key concepts]]
 

Please note that all contributions to MyWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see MyWiki:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: